Experimental

ARE THERE ELECTRICAL DEVICES THAT CAN MEASURE THE BODY'S ENERGY STATE CHANGE TO AN ACUPUNCTURE TREATMENT? Part I, The Meridian Stress Assessment (MSA-21) Device

Nancy R. Roberts, Ph.D.; C. Norman Shealy, M.D., Ph.D. & William A. Tiller Ph.D.

ABSTRACT

The general field of energy medicine is growing strongly but is still in great need of reliable monitoring instruments to assess the relative energetic state of humans with respect to a health/pathology ratio. Two commercial instruments: Bio-Meridian's MSA-21 and Korotkov's GDV were selected for an in-parallel study of the following question, "Can they meaningfully discriminate the effects of acupuncture treatment on the body's energy state?" In this part 1 paper we discuss the results obtained by Bio-Meridian' MSA-21. the experimental design was to determine if the MSA-21 and the GDV could discern a quantifiable difference between an authentic acupuncture session and a sham acupuncture session for 34 subjects. The single research hypothesis was, "If energy is added to and/or redistributed in the body via true acupuncture needling, as contrasted with sham acupuncture needling, a worthy measurement instrument must (at least) be able to discriminate this energy change contrast in a statistically significant fashion." Indeed, the MSA-21 instrument passed this test in good order and provided much useful adjunct information as well.

KEYWORDS: Energy-effect, MSA-21, acupunture, Qi-flow.

INTRODUCTION

he general field of energy medicine is growing strongly but is still in great need of reliable monitoring instruments to assess the relative energetic state of humans with respect to a health/pathology ratio. According to ancient Chinese medical therapy, the overall energy state and health condition of a human is largely determined by the flow of a substance called Qi through a system of channels, called meridians, distributed throughout the human body. Qi, is thought to flow into and out of the body via a network of acupuncture points and via the meridian network, to nourish various organ systems, neural systems, muscle groups, etc., of the coarse physical body.¹ Imbalances between Qi flow in the various meridians are thought to overnourish various coarse physical body systems and under-nourish others, leading eventually to different types of pathology development in such systems. Stimulation of specific acupuncture points via one of a variety of procedures, is thought to perturb the Qi-flow pattern towards optimal balance for the body and create a lessening or removal of the growing pathology. The NIH consensus report states that acupuncture has been quite helpful for lessening the severity of a variety of human disorders.² It is therefore quite natural that commercial devices for evaluating the condition of the meridian energy state would be seriously considered by those involved in complementary and alternative medicine.

We recently selected two commercial instruments for an in-parallel study of the following question, "Can they meaningfully discriminate the effects of acupuncture treatment on the body's energy state?" In this paper, we report on experimental results using Bio-Meridian's MSA-21 device, a highly advanced electro-dermal monitoring system which measures the time-varying current response of the skin to a constant voltage applied to an acupuncture point.³ In part II of this series of papers, we report on experimental results using Korotkov's Gas Discharge Visualization (GDV) Device, a sophisticated, modern-day version of Kirlian photography.⁴

In this exploratory study, 34 randomly chosen, clinically healthy subjects were utilized in a fashion such as to act as their own control. Data from each device was gathered before and after double-blind needling at both true and sham acupuncture points. The study required two visits by each subject for needling at five different acupuncture points, one for true and one for sham needling. The single research hypothesis was, "If energy is added to and/or redistributed in the body via true acupuncture needling, as contrasted with sham acupuncture needling, a worthy measurement instrument must (at least) be able to discriminate this energy change contrast in a statistically significant fashion." Indeed, the MSA-21 instrument passed this test in good order and provided much useful adjunct information as well.

EXPERIMENTAL PROCEDURES

THE DEVICE

he Bio-Meridian MSA-21 device is a much-upgraded version of the original Voll Dermatron device and, as such, measures the relatively slow current flow response of the skin (~10-100 sec) to a small (~ +2 volt) DC voltage applied to the skin.⁵ The electric circuit, consists of (1) a large cylindrical electrode held in the subject's hand, (2) the MSA-21 device, (3) a small (~1 mm) contact electrode pressed against a point on the subject's skin by the operator and (4) the return connection through the subject's body to the large electrode. For a healthy subject, an electric current in the 8-10 micro-amp range is generated in response to this +2 volt application. The attached computer converts this data to electrical impedance, which is displayed on a 0-100 scale with 50 indicating a normal, healthy person response. A reading of less than 50 is defined as a degenerative condition; a reading of more than 50 is defined as an irritated situation. A second important measurement is called the "indicator drop," (I.D.), wherein the conductance number, after slowly rising to its maximum value, drops fairly quickly to a final value with time. For a normal response (50), the I.D, occurs within 1-3 seconds and the electrical impedance maintains a constant value until the full measurement time has elapsed (10-20 sec). When there is an abnormal response (above or below 50), the I.D. is much longer (~20-60 secs), depending upon how far away from 50 the maximum reading occurred.

THE HUMAN PROTOCOL

The study required two visits, 3 days apart, to the Shealy Clinic. During one visit, subjects received "authentic" acupuncture and, during the second visit, they received "sham" acupuncture, both being administered by CNS. At random, 18 of the subjects were chosen to receive authentic acupuncture during the first session, while the other 16 received sham acupuncture and vice versa

for the second session. Five acupuncture points were selected for needling: LI-4, right and left (Large intestine), LR-3, right and left (Liver) and GV-20 (The Governor Vessel). The needles were left in place for 15 minutes.

SETTINGS/MEASURES

ach subject was comfortably seated in a recliner chair within a room of comfortable temperature (-72°F). After approximately 5 minutes of acclimation to the room, the subject's blood pressure and heart rate were recorded by a nurse. The subject was then positioned so that baseline readings could be measured by the MSA-21. These measurements consisted of 44 standard measurements for both the authentic and the sham points on each subject, 24 of which were located across both hands and 20 across both feet (see Table I). Baseline readings were repeated twice to assess the reproducibility of the measurements acquired by this equipment. All MSA-21 measurements were made by an accomplished practitioner with (NRR) watching the process.

Once the baseline measurements were taken, the subjects reclined in a chair and the acupuncturist (CNS) emplaced the five needles. Only CNS and his nurse knew whether the needle placement was authentic or sham. The needles were left in place for 15 minutes and then removed. At 5 minutes and 30 minutes after needle removal, repeat MSA-21 measurements were made. The subjects returned approximately three days later at approximately the same time of day to repeat the measurement process for the second type of needling.

The measurements associated with authentic acupuncture are compared with those from the sham acupuncture needling in the next section. The statistical significance was assessed via both the one-sample t-test and the paired t-test. The sham acupuncture treatment was compared to the two pre-treatment measurements to evaluate possible placebo effects, while these two pre-treatment measurements were utilized to evaluate reproducibility of the individual measurements.

RESULTS

There were 34 subjects measured on two occasions in this study with 44 acupuncture points measured 4 times on each occasion (2 pre- and 2 post-

<i>Table I</i> A Sample Printout from the BioMeridian MSA-21 Program										
Point	ID	Meridian	Max	Rise	Fall	Drop				
LY-1-2*R	Lymphatics	48	48	24	0	0				
LU-10c*R	Lungs	50	50	60	0	0				
LI-1b*R	Large Intestine	46	46	28	0	0				
NE-1b*R	Nervous System	54	53	49	0	1				
CI-8d*R	Circulation	47	47	30	0	0				
AL-1R	Allergies	45	45	25	0	0				
AL-1b*R	Allergies	48	48	45	0	0				
OR-1b*R	Cellular Metabolisr	n 46	46	24	0	0				
TW-1R	Endocrine System	45	45	28	0	0				
TW-1b*R	Endocrine System	47	46	38	0	1				
HE-8c*R	Heart	46	46	25	0	0				
SI-1b*R	Small Intestine	44	44	18	0	0				
LY-1-2*L	Lymphatics	49	49	36	0	0				
LU-10c*L	Lungs	46	46	21	0	0				
LI-1b*L	Large Intestine	46	46	27	0	0				
NE-1b*L	Nervous System	52	51	32	0	1				
CI-8d*L	Circulation	47	47	43	0	0				
AL-1L	Allergies	47	47	47	0	0				
AL-1b*L	Allergies	47	47	32	0	0				
OR-1b*L	Cellular Metabolisr	n 51	51	33	0	0				
TW-1L	Endocrine system	49	49	45	0	0				
TW-1b*L	Endocrine Systern	48	48	23	0	0				
HE-8c*L	Heart	50	50	33	0	0				
SI-1b*L	Small Intestine	50	50	29	0	0				
PA-1a*R	Pancreas	49	49	23	0	0				
LV-1a*R	Liver	49	49	31	0	Ō				
IO-1b*R	loints	48	48	54	0	0				
ST-44b*R	Stomach	49	49	58	Ő	ŏ				
FI-1b*R	Corrective Tissues	60	59	30	Ő	1				
SK-1-3*R	Skin	51	51	51	Ő	0				
FA-1b*R	Fatty Tissues	51	51	38	0	õ				
GB-43b*R	Gallbladder	51	51	40	õ	ŏ				
KI-1-3*R	Kidnevs	53	53	41	õ	õ				
UB-65R	Urinary Bladder	53	53	30	Õ	Õ				
SP-1a*L	Spleen	52	52	25	õ	ŏ				
LV-1a*L	Liver	52	52	25	Õ	Õ				
IO-1b*I	Lointe	40	40	22	õ	0				

needling). Thus, the raw database includes a total of 352 measurements for each subject for a total number of measurements of 11,968. The representative set of MSA-21 measurements for a single subject for one visit is presented

in Appendix A as an example of the data gathered. One of the baseline sets of readings for 37 of the total 44 points measured is presented in Table I as an illustration. The five column headings are defined as follows:

Max:The maximum registered electrical impedance, Z, reading,Min:After the max, the minimum registered electrical impedance reading,Rise:The time for Z to reach the max in seconds,Fall:The time between the max and min in seconds andDrop:The reading difference, Z max - Z min.

he large volume of data allowed for multiple approaches to data analysis. For the initial work recorded in this paper, only the Max value was singled out and placed in a spreadsheet for detailed study. NRR is the librarian for accessible storage of all the 11,968 datum values on these 34 subjects.

Based on the historical Asian perspective that pathology presents itself as increased differences between left-side and right-side readings for the same acupuncture points, the data were separated into right and left side groupings. A further separation into hands and feet groupings was also made. For data analysis, the following steps were taken:

- 1. A type of normalization procedure was invoked by subtracting 50 from each measured value,
- 2. The normalized baseline values were averaged for each acupuncture point (AP),
- 3. Right-side averages and left-side averages for all post-needling measurements were made,
- 4. Right-hand, left-hand, right-foot and left-foot averages for all postneedling measurements were also made, and
- 5. A delta (Δ)-value for each AP was determined by subtracting the average baseline reading at each AP from the 5-minute and 30-minute post-needle removal reading for that AP.

Our expectation was that any change in measured "energy effect" for the deltavalues should be greater for the authentic acupuncture than for the sham acupuncture. We also expected that, for sham acupuncture, the delta-values should be very small. Table II presents the differentials of the delta-values for the authentic (real) minus the sham AP needling for the averaged right-side and left-side of the body for each subject. Here, symbology of the variables is:

- A_b = averaged baseline reading,
- $A_5 =$ averaged value across all points at 5 minutes post-needling for authentic acupuncture,
- A_{30} = averaged value across all points at 30 minutes post-needling for authentic acupuncture.

 A_{br} , A_{bl} , A_{5r} , A_{5l} , A_{30r} & A_{30l} are for only right-side or left-side averaging and replacing A by S yields sham vs. authentic AP needling.

 $\Delta_{5r,l} = |A_5 - A_b|$ for both the right and left sides and,

 $\Delta_{30r,l} = |A_{30} - A_b|$ for both the right and left sides and,

 $\zeta_{5r,l} = |S_5 - S_b|$ for both the right and left sides and,

 $\zeta_{30r,l} = |S_{30} - S_b|$ for both the right and left sides and,

where || stands for taking the absolute value of the result.

From the above, $\Delta_{5r,l} - \zeta_{5r,l}$ and $\Delta_{30r,l} - \zeta_{30r,l}$ were determined. If the result was greater than zero, it was awarded a one (1) while, if it was less than zero, it was awarded a zero (0). This is analogous to a coin flip result for random choosing. Finally, the (1)'s were summed across all subjects.

rom Table II, one notes that the total differential delta values for authentic (real) acupuncture on the right side of the body at 5 minutes and 30 minutes were 51.5% and 60.6%, respectively, while for the left side of the body they were 48.5% and 66.7%, respectively. Overall, when one includes all readings at 5 and 30 minutes for both left and right sides of the body, 84.9% of the subjects had a greater delta-value for the real (authentic) than for the sham acupuncture. A statistical analysis of this data via a onesample t-test for $(\Delta - \varsigma)_{r,l}$ at 5 and 30 minutes being greater than zero gave $p < 10^{-4}$ for all cases with the t statistic being 5.83, 7.02, 5.49 and 8.00 for 5_r , 30_r , 5_l and 30_l , respectively. The expanded case of any $(\Delta - \varsigma) > 0$ also gave $p < 10^{-4}$ with a t-statistic value of 13.39.

<i>Table 11</i> Real minus Sham Averaged Differentials Relative to Baseline for Right and Left Side of the Body. [†]										
ID	Right:	REAL	minus s	SHAM	Left: R	EAL	minus SH	IAM	Any	
_	RT 5min	l a	RT 30n	lin	LT 5min		LT 30m	in	0	
7	-2.2/3	0	-1.455	0	-0.909	0	-3.636	0	0	
30 14	-1.455	0	-0.636	0	-0.091	0	-1.455	0	0	
14	-0.182	0	-5.591	0	-4.909	1	0.304	1	1	
18	-2.682	0	2.000	1	5.804 0.773	1	0.391	1	1	
19	-1.04)	0	2.000	1	-0.773	0	1.227	0	1	
15	-1.091	0	0.000	0	-0.391	1	-1.2/3	1	1	
34	-1.22/	1	-0.909	1	0.082	0	1.045	1	1	
31	0.150	0	1 227	0	-0.275	1	0.182	1	1	
13	-0.313	Ô	-0.727	Ő	1 409	1	0.102	1	1	
12	2 000	1	1 727	1	1.109	1	-0.318	Ô	1	
26	0.636	1	1 591	1	-0.909	0	-1.864	õ	1	
-0	0.136	1	-5.909	Ô	-0.045	Ő	-2.636	õ	1	
16	-0.682	0	0.091	1	1.773	1	0.591	1	1	
10	0.773	1	-1.000	0	-2.318	0	-1.045	0	1	
3	4.364	1	3.955	1	2.955	1	2.773	1	1	
22	0.182	1	-1.091	0	-0.545	0	0.636	1	1	
29	0.045	1	0.409	1	1.091	1	2.500	1	1	
21	-0.409	0	-2.409	0	-1.455	0	-5.682	0	0	
8	3.818	1	2.227	1	1.818	1	1.455	1	1	
20	-2.591	0	1.000	1	-1.409	0	3.955	1	1	
32	-1.500	0	1.182	1	-2.136	0	-0.591	0	1	
33	0.227	1	1.545	1	-0.909	0	0.545	1	1	
11	0.773	1	0.636	1	2.818	1	2.864	1	1	
6	0.636	1	-1.364	0	0.045	1	-0.545	0	1	
5	1.364	1	1.909	1	2.045	1	1.409	1	1	
4	-0.409	0	2.364	1	0.545	1	2.545	1	1	
28	2.773	1	2.136	1	3.909	1	1.045	1	1	
27	-3.364	0	3.636	1	-2.682	0	5.682	1	1	
23	0.818	1	1.091	1	-0.091	0	0.682	1	1	
25	3.091	1	0.273	1	0.318	1	2.409	1	1	
24	1.682	1	0.545	1	-0.682	0	0.318	1	1	
2	-1.318	0	-0.136	0	0.545	1	0.318	1	1	
D		1/		20		16		22	28	
Resp	ponse 5	1.515	(60.606	48	.485	66	6.667	84.848	
†	$\Delta_{5r1} - \zeta_{5r1} =$	IA5 - A	_b l - IS ₅ - S	S _b l						
	$\Delta_{30r,l}$ - $\zeta_{30r,l}$	= IA ₃₀ -	A _b I - IS ₃₀	5- S _b l						

A second data analysis approach looked at the differential deltas between the right and left sides of the body and comparing the authentic and sham needling for three different cases: (1) total body, (2) hands only and (3) feet only. Our expectation was that both $\{|A_{5r} - A_{5l}| - |\zeta_{5r} - \zeta_{5l}|\} > 0$ and $\{|\Delta_{30r} - \Delta_{30l}| - |\zeta_{30r} - \zeta_{30l}|\} > 0$. Table III presents the results for the total body where, at 5 and 30 minutes respectively, $p = 2.8 \times 10^{-3}$ and 5×10^{-4} with the t-statistic being 2.97 and 3.59. Thus, 63.6% of the subjects had positive values for 5 minutes, growing to 72.7% at 30 minutes and, overall, for a positive at either 5 or 30 minutes, this grew further to 84.8%.

able IV presents slightly different data for the hands only case where our expectation was that (a) $\Delta_{5\text{rh}} - \zeta_{5\text{rh}} > 0$, (b) $\Delta_{30\text{rh}} - \zeta_{30\text{rh}} > 0$, (c) $\Delta_{5\text{lh}} - \zeta_{5\text{lh}} > 0$ and (d) $\Delta_{30\text{th}} - \zeta_{30\text{th}} > 0$. The statistical analysis for a, b, c and d, respectively, gave $p < 10^{-4}$ for all cases with the t-statistic being 4.56, 4.86, 4.86 and 9.24. For the right hand column, $p < 10^{-4}$ and the *t*-statistic is 13.39. For the right hand, only 39.4% of the subjects had a greater response to authentic than to sham needling at 5 minutes, which grew to 42.4% at 30 minutes. For the left hand, the same assessment gave 42.4% at 5 minutes growing to 72.7% at 30 minutes.

Table V presents the same type of data as Table IV, but for the feet rather than for the hands. The statistical analysis for our a, b, c and d expectations yield $p < 10^{-4}$ for all cases with a *t* statistic of 7.02, 5.49, 4.56, and 5.16, respectively. For the right foot, 60.6% of the subjects had a greater response to authentic than to sham needling at 5 minutes, which fell to 48.5% at 30 minutes. For the left foot, the same assessment gave 39.4% at 5 minutes growing to 45.5% at 30 minutes. From both Tables IV and V, the right hand column gives, for ($\Delta - \zeta$) at any value of 5 or 30 minutes and R- or L-side, that 84.85% and 93.94%, respectively, favor the authentic vs. the sham needling. For both cases, $p < 10^{-4}$ and the *t*-statistic are 13.39 and 22.27, respectively.

As a next to final assessment, Table VI lists raw data for $|A_5 - A_b|$, $|A_{30} - A_b|$, $|S_5 - S_b|$, $|S_{30} - S_b|$ for both the left and right sides of the body. Looking at the total sum values at the bottom of each column, one is able to deduce that (1) $\Delta > \zeta$ at both 5 and 30 minutes, (2) $\Delta_{30} > \Delta_5$ for both right and left sides of the body with right > left at 5 minutes but not at 30 minutes and

{ Δ _{5r} - Δ Positi	- 51 - IV ₅₁ - V ₅₁ ive/Negative va	Table III } and $\{ \Delta_{30} $ alue assessm	$_{\rm r}$ - Δ_{301} - $ { m V}_3$ ents for all s	_{0r} - V ₃₀₁ } ubjects
Real minus	Sham for Rig	t minus L Yes	eft, at 5 min Yes	and 30 min Yes
5 min	30 min	5 min	30 min	5 and/or 30
-1.000	2,182	0	1	1
1.364	0.818	1	1	1
-1.273	0.773	0	1	1
0.455	5.227	1	1	1
-0.273	-0.227	0	0	0
0.500	1.273	1	1	1
0.091	-0.455	1	0	1
0.409	2.273	1	1	1
1.409	-1.409	1	0	1
1.409	6.273	1	1	1
-0.318	2.045	0	1	1
0.545	3.455	1	1	1
-0.182	-2.455	0	0	0
2.455	2.500	1	1	1
3.091	0.045	1	1	1
1.409	1.182	1	1	1
-0.182	-1.727	0	0	0
1.045	1.818	1	1	1
-1.045	3.273	0	1	1
2.000	0.773	1	1	1
-0.182	-0.045	0	0	0
0.091	1.773	1	1	1
-0.682	1.000	0	1	1
2.045	2.500	1	1	1
0.591	-0.182	1	0	1
-0.682	0.500	0	1	1
0.955	1.364	1	1	1
-0.136	1.091	0	1	1
0.682	-0.955	1	0	1
0.636	0.409	1	1	1
2.773	2.227	1	1	1
1.909	0.227	1	1	1
-0.591	0.000	0	0	0
		21	24	28
cent Re	sponse	63.636	72.727	84.848

<i>Table IV</i> Real minus Sham Results for the Hands on the Right and Left Sides of the Body										
			Rea	d minu	s Sham:	Hands	6			
		Righ	t			Lef	t		Hands:	
	5 min		30 mi	n	5 min		30 min		Total	
ID	Δ _{5rh} - ς _{5r}	Ь	Δ _{30rh} - ς ₃	0rh	$\Delta_{\rm 5lh}$ - $\varsigma_{\rm 5lh}$		Δ _{30lh} - ς _{30l}	հ	Awards	
7	-2.083	0	-4.250	0	-1.583	0	-4.167	0	0	
30	-0.167	0	-1.000	0	-3.917	0	-3.583	0	0	
14	-1.417	0	-5.583	0	-1.917	0	-4.250	0	0	
18	-0.917	0	-1.500	0	2.583	1	2.250	1	1	
19	0.583	1	1.833	1	-0.333	0	3.167	1	1	
15	-0.333	0	-1.250	0	-2.750	0	2.083	1	1	
1	-2.833	0	-1.667	0	1.083	1	0.167	1	1	
34	-0.500	0	1.500	1	-1.167	0	0.667	1	1	
31	-2.000	0	-5.667	0	1.333	1	-0.917	0	1	
13	-2.750	0	-2.333	0	1.500	1	-0.833	0	1	
12	2.417	l	3.917	1	4.417	l	3.16/	l	1	
26	-0.250	0	-0.583	0	-0.083	0	0.500	1	1	
9	-0.083	0	-4.917	0	-0.750	0	-0.917	0	0	
16	0.583	1	1.917	1	3.41/	1	0.833	1	1	
10	0.083	1	-1.583	0	-1.583	0	-1.833	0	l	
3	5.083	1	4.250	I	4.000	I	5.41/	1	1	
22	0.333	1	-1./50	0	-0.333	0	-0.91/	0	1	
29	0.000	0	1.000	1	-0./50	0	0.500	1	l	
21	-0./50	0	-1.41/	0	-0.250	0	-4.333	0	0	
8	3.250	1	1./50	1	1.583	1	0.66/	1	1	
20	-3.41/	0	-0.500	0	-1.500	0	2.16/	1	1	
32	-1.083	0	2.000	1	-1.333	0	0.833	1	1	
33 11	0.91/	1	1.00/	1	-0.500	1	0./50	1	1	
11	-1.383	0	-1.333	0	1.333	1	2./30	1	1	
5	1.000	1	-1.10/	0	1.065	1	0.083	1	1	
) 4	0.250	1	-0.91/	0	-1.20	1	0.085	1	1	
-4 -20	-0.230	1	2 500	1	1.750	1	2.007	1	1	
20	5 3 3 3	0	5.500 4 500	1	2 500	1	6 5 8 3	1	1	
23	0.000	0	-0.167	0	-2.900	0	1 167	1	1	
25	2 000	1	-0.107	1	-1.005	0	2.667	1	1	
24	-0.750	0	-1 167	0	0 333	1	1 333	1	1	
2	0.500	1	0.083	1	0.167	1	0.917	1	1	
-	0.900	13	0.000	14	0.10/	14	0.71/	24	28	
0/_ D	00000000	20 20		42 42	,	17 47	,		94 OE	
70 K	csponse	37.39		72.42	2	12.42		/ L. / L	04.07	

Table VReal minus Sham Results for the Feet on the Right and Left Sides of the Body										
				Real mi	inus Shar	n: Fe	et		5	
		Righ	ıt	itteni ini	inus onu	L	eft			
	5 mir	n	30 n	nin	5n	nin	30 m	nin	Total	
ID	Δ_{5rf} - ζ	5rf	Δ _{30rf} -	ς _{30rf}	Δ_{5lf}	- ς _{51f}	Δ_{30lf} -	ς _{30lf}	Poss	
7	0.5	1	1.9	1	2.3	1	-3	0	1	
30	2.2	1	0.2	1	-1.7	0	-0.9	0	1	
14	1.3	1	-5.6	0	-4.3	0	-4.7	0	1	
18	3.4	1	5.8	1	4.2	1	-1.4	0	1	
19	3	1	-2.2	0	1.3	1	-1.1	0		
15	-2.8	0	0.3	1	3	1	-0.1	0	1	
1	-0.1	0	0	0	0.2	1	2	1	1	
34	0.9	1	5.5	1	0	0	-0.9	0	1	
31 12	0.8	1	4.1	1	-1.9	0	-1.5	0	1	
15	0.1	1	-4.4	0	-0.5	0	1.0	1	1	
12	1.)	1	-0.9	0	-2.2	0	-4.)	0		
20	-5.7	1	-9.0	0	-1.5	0	-4.7	0	1	
16	-0.8	0	-4.)	1	-0.0	0	0.3	1	1	
10	-0.0	1	-0.3	0	-0.2	Ő	-0.1	0	1	
3	3.5	1	3	1	1.7	1	-0.4	õ	1	
22	-0.4	Ô	-0.3	Ô	-0.2	0	2.1	ĩ	1	
29	0.1	1	-0.3	0	-0.3	0	0.7	1	1	
21	0	0	-3.6	0	-2.9	0	-7.1	0	0	
8	4.5	1	1	1	1.5	1	2.4	1	1	
20	-1.6	0	2.8	1	-1.3	0	4.3	1	1	
32	-1.2	0	-0.2	0	-3.1	0	0.7	1	1	
33	0.2	1	-0.6	0	-0.4	0	-1.1	0	1	
11	3.6	1	1.6	1	3.4	1	3	1	1	
6	0	0	-1.6	0	1.2	1	-0.3	0	1	
5	1.8	1	3.7	1	1.2	1	0.2	1	1	
4	-1.2	0	2.7	1	-0.9	0	2.4	1	1	
28	-1.1	0	-1.7	0	2.9	1	-2.7	0		
27	-l	0	2.6	1	-2.9	0	3	1	1	
23	1.8	1	4	1	1./	1	-0.5	0	1	
25	5.4 0.2	1	-0.2	0	-1.2	0	2.1	1	1	
24 2	0.2	0	-0.0	1	-1.7	1	2.3 0.4	1	1	
2	~3.1	20	1.4	16	T	13	0.4	15	31	
=		20		10		1.5	_	1)	51	
% R	esponse	60.61		48.48		39.3	9	45.45	93.94	

Subtle Energies & Energy Medicine • Volume 13 • Number 3 • Page 272

	Table VI Raw Data for $ A_5 - A_b $, $ A_{30} - A_b $, $ S_5 - S_b $, and $ S_{30} - S_b $											
ID		п	, , , ,	<i>y</i> 50	0 9	0	JU 0					
ID	Deal a f	Real = 20	Paul 15	Bas 1 20	Sham a S	Sham a 30	am Show 15	Sham 1 20				
7	Real F-5	2 5 4 5	1 045	1 955	3 1 3 G	3nam r-30	3 nam 1-5	5 501				
30	0.004	1 136	1.682	0.818	1.682	1 773	1.773	2 273				
14	2 182	0.545	0.455	0.010	2 364	6.136	5 364	6773				
18	1.682	2 273	6 182	4 636	4 364	1 182	0.318	4 045				
19	1.002	3 4 5 5	0.818	2.955	2 1 3 6	1.455	1 591	0.727				
15	0.318	2.227	1.682	0.273	1.409	2.227	2.273	1.545				
1	0.136	0.227	1.136	0.864	1.364	1.136	0.455	0.045				
34	3.091	4.273	1.318	2.364	2.955	0.955	1.591	1.318				
31	0.318	2.091	1.909	0.455	1.136	3.318	0.955	0.273				
13	0.545	0.455	2.318	4.091	1.273	1.182	0.909	3.818				
12	3.727	5.727	3.773	5.636	1.727	4.000	2.091	5.955				
26	1.182	2.409	0.136	0.727	0.545	0.818	1.045	2.591				
9	0.364	0.136	1.000	0.545	0.227	6.045	1.045	3.182				
16	0.318	0.545	2.955	2.045	1.000	0.455	1.182	1.455				
10	4.273	3.409	1.045	1.773	3.500	4.409	3.364	2.818				
3	5.364	4.682	3.636	3.545	1.000	0.727	0.682	0.773				
22	0.500	1.136	0.227	1.045	0.318	2.227	0.773	0.409				
29	0.273	1.136	1.636	3.091	0.227	0.727	0.545	0.591				
21	0.500	0.636	0.909	0.455	0.909	3.045	2.364	6.136				
8	4.500	3.136	2.409	1.545	0.682	0.909	0.591	0.091				
20	1.227	3.773	1.727	5.227	3.818	2.773	3.136	1.273				
32	1.000	1.591	0.636	1.182	2.500	0.409	2.773	1.773				
33	0.455	1.955	0.227	0.727	0.227	0.409	1.136	0.182				
11	1.773	2.091	4.000	4.455	1.000	1.455	1.182	1.591				
6	1.227	0.500	0.409	0.818	0.591	1.864	0.364	1.364				
5	3.455	2.318	2.273	2.136	2.091	0.409	0.227	0.727				
4	0.182	3.091	1.636	3.864	0.591	0.727	1.091	1.318				
28	5.136	4.864	5.636	4.545	2.364	2.727	1.727	3.500				
27	2.000	5.591	2.864	6.136	5.364	1.955	5.545	0.455				
23	1.455	1.909	0.682	1.273	0.636	0.818	0.773	0.591				
25 2	3.136	1.455	0.318	3.636	0.045	1.182	0.000	1.227				
24	2.227	1.500	0.091	0.545	0.545	0.955	0.773	0.227				
2	0.318	0.22/	0.955	0.455	1.636	0.364	0.409	0.136				
	<u> </u>	/ 3.045	5/./2/	/4.22/	55.504	62.773	50.000	04.//3				

(3) $\zeta_{30} > \zeta_5$ for both right and left sides of the body with right > left at 5 minutes but not at 30 minutes. Thus, the influence of both authentic and sham needling grows with time with the authentic needling providing a larger effect than the sham needling and, in both cases, the left side-effect was slightly larger than the right side at 30 minutes.

s a final assessment, the baseline "max" values were averaged for each acupuncture point with the variance and standard deviation being assessed for each patient visit individually and across all patients collectively. This result is presented in Table VII via the following definitions:⁶

Mean Diff of Pre's = $|\sum_{1}^{44}$ Pre 2 - \sum_{1}^{44} Pre 11 /88, summed across all A.P.'s for one subject,

Deviation = \sum_{1}^{68} (Mean diff of pre's/68)—mean diff of pre's for that subject with 68 readings per all subjects for 2 visits at each AP,

Dev SQ = (Deviation)², across all patients,

Variance = $(\sum_{1}^{34} [Deviation]^2)/67$,

Standard Dev = $(Variance)^{1/2}$.

DISCUSSION

Before proceeding to a rigorous discussion of Tables II to VII it seems beneficial to look at the fundamentals of the measurement process itself. This will allow us to see if the "Max" column from Table I is, in fact, the best single choice for assessment of the MSA-21 capabilities. Further, it will allow us to relate these different columns to fundamental parameters and processes operating in the body. First, we must recognize that what we call a physical material (e.g. skin) is comprised of three main aspects, (1) the coarse physical (particulate), (2) the fine physical (information wave) and (3) a higher dimensional "coupling" medium.¹ Here, we will restrict ourselves primarily to the coarse physical aspect and only indicate where and how a contribution from the fine physical aspect can be seen. The full picture is well beyond the scope of this paper.

Subj.	Mean diff				· · -
ID	of pre's	Deviation	Dev Sq	Variance	Std Dev
7a	2.841	-0.014	0.000	11.870	3.445
7Ь	2.807	0.020	0.000	7.316	2.705
30a	2.682	0.145	0.021	11.498	3.391
30Ь	3.295	-0.469	0.220	11.325	3.365
14a	2.000	0.827	0.683	5.149	2.269
14b	2.955	-0.128	0.016	13.071	3.615
18a	2.386	0.440	0.194	15.169	3.895
18b	2.273	0.554	0.307	6.937	2.634
19a	3.602	-0.776	0.602	1.780	1.334
19Ь	1.761	1.065	1.135	3.878	1.969
15a	2.909	-0.083	0.007	9.738	3.121
15b	3.989	-1.162	1.350	13.576	3.685
la	2.398	0.429	0.184	6.578	2.565
1b	1.875	0.952	0.905	4.009	2.002
34a	2.625	0.202	0.041	14.700	3.834
34b	3.580	-0.753	0.567	12.970	3.601
31a	3.670	-0.844	0.712	12.675	3.560
31b	2.852	-0.026	0.001	10.470	3.236
13a	4.659	-1.833	3.358	29.669	5.447
13b	2.852	-0.026	0.001	11.620	3.409
12a	4.250	-1.423	2.026	19.876	4.458
12b	3.784	-0.958	0.917	14.053	3.749
26a	2.807	0.020	0.000	25.707	5.070
26Ь	3.761	-0.935	0.874	15.061	3.881
9a	2.977	-0.151	0.023	12.450	3.528
9Ь	2.966	-0.139	0.019	14.864	3.855
16a	2.761	0.065	0.004	11.723	3.424
16b	2.545	0.281	0.079	7.775	2.788
10a	2.580	0.247	0.061	7,535	2.745
10b	3.636	-0.810	0.656	13.413	3.662
3a	4.500	-1.673	2.800	19.595	4.427
3b	2.205	0.622	0.387	5,486	2.342

a single patient.

	Table VII (continued)									
Subj ID	Mean diff of pre's	Deviation	Dev Sg	Variance	Std Dev					
22a	4.864	-2.037	4.150	21.788	4.668					
22b	1.739	1.088	1.184	3.528	1.878					
29a	3.966	-1.139	1.298	17.945	4.236					
29Ь	2.261	0.565	0.319	7.022	2.650					
21a	3.352	-0.526	0.276	11.463	3.386					
21b	2.920	-0.094	0.009	10.060	3.172					
8a	2.852	-0.026	0.001	10.516	3.243					
8b	2.648	0.179	0.032	8.845	2.974					
20a	2.352	0.474	0.225	7.402	2.721					
20b	2.693	0.133	0.018	8.306	2.882					
32a	2.250	0.577	0.332	8.761	2.960					
32b	2.750	0.077	0.006	8.617	2.935					
33a	5.057	-2.230	4.974	24.601	4.960					
33b	1.773	1.054	1.111	4.237	2.058					
11a	3.114	-0.287	0.082	10.434	3.230					
11b	2.875	-0.048	0.002	10.426	3.229					
6a	3.239	-0.412	0.170	11.828	3.439					
6b	1.477	1.349	1.821	2.595	1.611					
5a	2.284	0.542	0.294	8.072	2.841					
5b	2.443	0.383	0.147	6.096	2.469					
4a	2.761	0.065	0.004	9.677	3.111					
4b	2.545	0.281	0.079	8.970	2.995					
28a	4.295	-1.469	2.158	16.387	4.048					
28b	3.443	-0.617	0.380	12.868	3.587					
27a	2.227	0.599	0.359	6.974	2.641					
27b	3.580	-0.753	0.567	13.706	3.702					
23a	2.523	0.304	0.092	9.375	3.062					
23Ь	2.455	0.372	0.138	6.493	2.548					
25a	2.818	0.008	0.000	8.812	2.968					
25Ь	2.909	-0.083	0.007	9.738	3.121					
24a	3.511	-0.685	0.469	14.416	3.797					
24b	2.523	0.304	0.092	7.076	2.660					
2a	-0.011	2.838	8.054	0.011	0.107					
2Ь	2.932	-0.105	0.011	11.991	3.463					
	Variance		0.702							
	Std Dev		0.838							
Ave	rage Variance			10.918						
Ave	rage Std Dev				3.187					

Subtle Energies & Energy Medicine • Volume 13 • Number 3 • Page 276

Figure 1. (a) The simplest frequency independent electrical equivalent circuit used for skin measurements. (b) Current waveform arising from the application of a constant DC voltage to the circuit of Figure 1a.

The MSA-21 measurement system is based on an earlier instrument, the Voll Dermatron,⁵ which applies a fixed voltage, V_o , to an AP, measures the relatively slow time-dependent current response, i(t), and internally calculates (and displays) the time-dependent electrical impedance, Z(t). Ohm's law provides us with the simple formula

$$Z(t) = V_0/i(t)$$
(1a)

he idealized electrical equivalent circuit for skin is shown in Figure 1a, where R_1 is the resistance of the dermis while R_2 and C are the resistance and capacitance, respectively of the epidermis (especially dominant is the stratum corneum).^{7,8} For such a circuit, a constant applied voltage, V_o yields a current profile like that shown in Figure 1b, where the current falls from the initial value, i_o , in an exponential fashion (with time constant, x), to a final value at long time ($\Delta t - 3\tau$) of i_∞ . Theory yields the following:⁷

$$i_o = V_o/R_1$$
; $i_\infty = V_o/(R_1 + R_2)$; $\tau = R_1R_2C/(R_1+R_2) \approx R_1C$ for $R_1 < < R_2(1b)$

Thus, from equations 1a and lb, we see that the initial impedance, $Z_o = R_I$, at t = 0, and that Z should rise exponentially with a time constant, τ , to a final value of $Z_{\infty} = R_I + R_2$ so that

$$Z(t) \approx R_1 + R_2(1 - e^{-t/\tau})$$
 (1c)

Figure 2. (a) Solid curve is the expected change in Z with time while (b) shows the MSA-21 actual plot with time.

his would be the result if R_1 , R_2 and C for the skin did not change as a result of this slow conduction of ions between the cells of the epidermis and the polarization of the ions within each such cell.

For constant material parameters then, one expects a plot of Z vs. time to be like that shown in Figure 2a, whereas the MSA-21 yields plots like that shown in Figure 2b. Large electrode area studies conform to Figure 2a where $R_2 - 3-5 R_1$ and $\tau - 10^2$ seconds (R_1 and R_2 measured, include contact resistance between the electrode and the skin).⁸

Perhaps, since the MSA-21 measuring electrode is small, it contacts largely the high conductance region of an acupuncture meridian so that R_1 and R_2 can be smaller (by a factor of ~10) than the values found for Figure 1a (and also depend upon the hypnogogic state of the subject).⁷ This suggests that the time-plot of Figure 2b would appear to go through the origin rather than giving a measurable intercept. Perhaps also, the internal electronics of the MSA-21 linearizes the exponential curve of Figure 2a to follow the dashed line to the intercept point with $R_1 + R_2$ and τ , respectively, for the particular acupuncture point/meridian circuit element. However, there is no possibility for this idealized electrical equivalent circuit (see Figure 1a) to account for min, drop and fall.

To effectively bring min, drop and fall into the picture, we must include a contribution from the "fine physical" aspect of the body and postulate that the APs and meridians function at that level and that Qi-flow *induces* an electric field, E, along the meridian trace at the coarse physical level.⁷ This is why the

conductance of an AP is measured to be so much higher than non-AP skin. Conversely, if a current is driven along a meridian by an applied voltage, V_o , at the coarse physical level, this will induce a magnetic vector potential differential build-up at the fine physical level which will eventually discharge back into the coarse physical level as an increased pulse of current flow *i* and t_{∞} , (and therefore a reduced Z as detected experimentally). Thus, max - min = drop, would be this ΔZ change and the fall would be its effective pulse time. Now we can properly proceed because some of the mystery has been taken out of the measurement system.

Overall we have used "max" as our measurement parameter for testing, which simple theory suggests is $-R_2$, for the epidermal conduction process. Likewise, we could have used τ as our testing parameter and evaluated R_1C for the various subjects. Further, (1) if the theoretical analysis is correct, the measurement parameter "drop" should be -0 for sham acupuncture at all APs for all subjects and (2) for healthy subjects such as these, the direction of Qi-flow through the body would induce a bucking E-field (smaller í and larger Z) on one side of the body and an enhancing E-field (larger í and smaller Z) on the other. Table III suggests that such an additional field effect exists with the L-side being the bucking side and the R-side being the enhancing side.

or healthy subjects, any $(\Delta - \varsigma) > 0$ at either 5 minutes, 30 minutes, R-side or L-side, confirms our hypothesis concerning authentic vs. sham acupuncture. The far right column of Tables II and III robustly supports this hypotheses indicating that the MSA-21 instrument can discriminate authentic from sham acupuncture needling. Table II suggests that 5 minutes post-needling was insufficient time to see a meaningful effect, whereas 30 minutes was sufficient. Perhaps 60 minutes post-needling would have shown an even larger effect.

It is interesting that, from Table IV, the criteria $(\Delta - \zeta)_h > 0$ for both 5 minutes and 30 minutes at the R-side and the L-side of the body was not generally satisfied at least 50% of the time. This suggests that, indeed, it is important to take absolute values rather than algebraic values for such quantities. Likewise, for Table V, the same unsatisfactory position holds for $(\Delta - \zeta)_f > 0$ when the algebraic values are used for the feet. By simply glancing at Tables IV and V, one readily sees that the absolute values of these quantities readily satisfy expectations for both the hands and the feet. The final assessable question for the MSA-21 is "are repeated measurements by this instrument within an acceptable range of accuracy?" Table VII shows that the variance and standard deviation, respectively, are 0.70 and 0.84 across all subjects for the difference between the pre-needling measurements at all APs over two visits per subject. Most people would consider this to be acceptable reproducibility for this type of measurement. However, it is very important to stress that all the measurements were made by a long-time, accomplished practitioner and not by a novice.

CONCLUSIONS

- 1. The MSA-21 instrument was readily able to distinguish authentic acupuncture needling from sham acupuncture needling, and
- 2. For healthy subjects, the MSA-21 instrument detected a larger response to authentic needling compared to sham needling on the right side of the body relative to the left. This body asymmetry effect could be related to the direction of Qi-flow through the body.

• • •

CORRESPONDENCE: Nancy Roberts • 27913 N. 154th Place • Scottsdale, AZ 85262

REFERENCES & NOTES

- 1. W. A. Tiller, W. E. Dibble, Jr. & M. J. Kohane, *Conscious Acts of Creation: The Emergence of a New Physics* (Pavior Publishing, Walnut Grove, CA, 2001).
- 2. National Institute of Health, Consensus Statement Online (1997).
- 3. D. W. Remington, A History of Meridian Stress Assessment (BioMeridian, The Human Calibration Company, 12411 South 265 West, Suite F, Draper, UT 84020, 1998).
- 4. K. Korotkov, Aura and Consciousness; New Stage of Scientific Understanding (Kultura, St. Petersburg Division of Russian Ministry of Culture, 1998).
- 5. R. Voll, Twenty Years of Electro-Acupuncture Diagnosis in Germany. A Progress Report, American Journal of Acupuncture, **3** (1975), pp. 7-17.
- 6. Electronic Textbook StatSoft, Statsoft, Inc. (www.statsoftinc.com/textbook/stathome.html, 1984-2004).
- W. A. Tiller, On the Evolution and Future Development of Electrodermal Diagnostic Instruments, In *Energy Fields in Medicine* (M. A. Horton & C. Dloohy, Eds., Fetzer Foundation, Kalamazoo, MI, 1989).
- 8. T. Rosendal, Further Studies on the Conducting Properties of Human Skin to Direct and Alternating Current, *Acta Physiology Scandinavia* 8 (1944), pp. 183-202, and 9 (1945), pp. 39-49.

 $\infty \infty \infty$

APPENDIX A

The reports shown below are for visits 1-4 of this subject. A complete data set would consist of eight data sets, 2 pre-measurements, post 5 and post 30 minutes for both sessions (Real and Sham).

Client Number:	1A Vis	sit Nur	nber: 1	User Name:	SYSDBA	
Name:	- Da	te and	Time: 6/22/20	001, 10:00		
		Base	Readings			
Point ID	Meridian	Max	Min	Rise	Fall	Drop
LY-1-*R	Lymphatics	50	49	38	0	
LU-10c*R	Lungs	50	50	33	õ	Ô
LI-16*R	Large Intestine	50	50	32	ň	ő
NE-1b*R	Nervous System	53	52	50	Õ	1
CL-8d*R	Circulation	57	57	61	Ő	Ó
AL-1R	Allergies	48	47	30	Õ	1
AL-1b*R	Allergies	49	49	31	ŏ	Ô
OR-16*R	Cellular Metabolism	49	49	22	Ő	ŏ
TW-1R	Endocrine System	51	50	34	Õ	1
TW-16*R	Endocrine System	51	50	52	0	1
HE.8c*R	Heart	52	52	30	0	0
SL16*R	Small Intestine	50	50	39	0	0
IV 1 2*I	Jumpharice	40	20 40	25	0	0
LI-1-2 L	Lympianes	50	49	25	0	1
	Lungs	50	49	35	0	1
LI-ID L NIE 1L*I	Large Intestine	56	49	50 42	0	1
	Circulation	50 47	50 47	42	0	0
	Alleration	47	4/	28 61	0	0
AL-IL	Allergies	4/	4/	41	0	0
AL ID'L	Allergies	48	48	44	0	0
UK-ID L	Cellular Metabolism	48	48	20	0	0
I W-IL	Endocrine System	48	48	38	0	0
	Endocrine System	48	48	34	0	0
HE-8C [°] L	Heart	50	50	3/	0	0
SI-Ib [*] L	Small Intestine	50	50	4/	0	0
PA-Ia [*] R	Pancreas	65	65	32	0	0
LV-la [*] K	Liver	53	53	36	0	0
JO-16 [*] R	Joints	50	50	30	0	0
ST-445*R	Stomach	56	56	37	0	0
FI-1b*R	Connective Tissues	51	51	36	0	0
SK-1-3*R	Skin	51	51	35	0	0
FA-1b*R	Fatty Tissues	53	53	65	0	0
GB-43b*R	Gallbladder	51	51	32	0	0
KI-1-3*R	Kidneys	51	51	37	0	0
UB-65R	Urinary Bladder	47	47	29	0	0
SP-1a*L	Spleen	53	53	29	0	0
LV-1a*L	Liver	60	60	37	0	0
JO-1b*L	Joints	54	54	40	0	0
ST-44b*L	Stomach	54	54	37	0	0
FI-1b*L	Connective Tissues	53	53	29	0	0
SK-1-3*L	Skin	51	51	23	0	0
FA-lb*L	Fatty Tissues	51	51	25	0	0
GB-43b*L	Gallbladder	50	50	24	0	0
KI-1-3*L	Kidneys	55	53	64	16	2
UB-65L	Urinary Bladder	51	51	35	0	0

Client Number: 1A Name: -----

APPENDIX A (cont.) Confidential Client Information Visit Number: 2 User Name: SYSDBA Date and Time: 6/22/2001 10:13

		Base	Readings			
Point ID	Meridian	Max	Min	Rise	Fall	Drop
LY-1-2*R	Lymphatics	51	51	25	0	Ô
LU-10c*R	Lungs	51	51	32	0	0
LI-1b*R	Large Intestine	50	50	30	0	0
NE-1b*R	Nervous System	52	SI	48	0	1
CI-8d*R	Circulation	52	52	48	0	0
AL-1R	Allergies	49.	48	33	0	1
AL-1b*R	Allergies	49	48	27	0	1
OR-1b*R	Cellular Metabolism	47	47	37	0	Ō
TW-1R	Endocrine System	49	49	48	õ	Õ
TW-16*R	Endocrine System	53	51	56	Š	2
$HE_{8c}R$	Heart	52	50	59	10	2
SL-1b*R	Small Intestine	53	52	56	10	1
I V-1-2*I	Lymphatics	51	51	39	ŏ	Ô
LU-10c*I	Lunge	49	49	30	Ő	Ő
LU-16C L	Large Intestine	46	46	40	Ő	0
NE 16*I	Nervous System	40	40	46	0	0
CL 84*I	Circulation	40	40	30	0	0
	Allensie	49	49	34	0	1
AL-IL AT 1L*T	Allergies	40	4/	20	0	1
AL-IU L	Cill In March Illing	49	49	50	0	0
UK-ID'L	Cellular Metabolism	 	51	44	0	0
1 W-1L TW7 11 *I	Endocrine System	49	49	41	0	0
	Endocrine System	50	50	40	0	0
HE-8CL	Heart	49	48	24	0	1
SI-ID"L	Small Intestine	51	50	51	0	1
PA-Ia [*] K	Panoreas	79	59	44	0	0
LV-Ia [*] K	Liver	50	50	2/	0	0
JO-Ib [*] R	Joints	49	48	34	0	1
S1-44b*R	Stomach	49	49	52	0	0
FI-Ib*R	Connective Tissues	47	47	42	0	0
SK-1-3*R	Skin	48	48	32	0	0
FA-1b*R	Fatty Tissues	50	50	46	0	0
GB-436*R	Gallbladder	49	49	28	0	0
KI-1-3*R	Kidneys	46	46	63	0	0
UB-65R	Urinary Bladder	47	47	41	0	0
SP-1a*R	Spleen	54	54	24	0	0
LV-la*L	Liver	62	62	31	0	0
JO-1b*L	Joints	50	50	29	0	0
ST-44b*L	Stomach	50	50	28	0	0
FI-1b*L	Connective Tissues	51	51	30	0	0
SK-1-3*L	Skin	51	51	32	0	0
FA-1b*L	Fatty Tissues	53	53	35	0	0
GB-43b*L	Gallbladder	49	49	43	0	0
KI-1-3*L	Kidneys	48	48	46	0	0
UB-65L	Urinary Bladder	45	45	26	0	0

APPENDIX A (cont.) Confidential Client Information

Client Number: 1A Name: ----- Confidential Client Information Visit Number: 3 User Name: SYSDBA Date and Time: 6/22/2001, 10:46

	Base Readings									
Point ID	Meridian	Max	Min	Rise	Fall	Drop				
LY-1-2*R	Lymphatics	49	49	29	0	Ô				
LU-10c*R	Lungs	51	51	36	0	0				
LI-Ib*R	Large Intestine	50	50	24	0	0				
NE-1b*R	Nervous System	55	54	52	0	1				
CI-8d*R	Circulation	52	52	38	0	0				
AL-1R	Allergies	48	48	21	0	0				
AL-1b*R	Allergies	48	48	26	0	0				
OR-1b*R	Cellular Metabolism	44	44	22	0	0				
TW-1R	Endocrine System	50	50	49	0	0				
TW-1b*R	Endocrine System	52	52	36	0	0				
HE-8c*R	Heart	52	52	37	0	0				
SI-1b*R	Small Intestine	54	54	60	0	0				
LY-1-2*L	Lymphatics	50	50	27	0	0				
LU-10c*L	Lungs	51	SI	27	0	0				
LI-1b*L	Large Intestine	51	51	27	0	0				
NE*1b*L	Nervous System	54	54	38	0	0				
CI-8d*L	Circulation	49	49	32	0	0				
AL-1L	Allergies	48	49	38	0	0				
AL-1b*L	Allergies	49	49	43	0	0				
OR-1b*L	Cellular Metabolism	50	50	44	0	0				
TW-1L	Endocrine System	50	50	53	0	0				
TW-1b*L	Endocrine System	52	51	39	0	1				
HE-8c*L	Heart	53	53	43	0	0				
SI-1b*L	Small Intestine	51	51	26	0	0				
PA-1a*R	Pancreas	62	62	34	0	0				
LV-1a*R	Liver	51	51	31	0	0				
JO-1b*R	Joints	47	47	28	0	0				
ST-44b*R	Stomach	48	48	44	0	0				
FI-1b*R	Connective Tissues	50	49	37	0	1				
SK-1-3*R	Skin	49	49	33	0	0				
FA-1b*R	Fatty Tissues	50	50	36	0	0				
GB-43b*R	Cajĺbladder	49	49	25	0	0				
KI-1-3*R	Kidneys	47	47	28	0	0				
UB-65R	Urinary Bladder	47	47	23	0	0				
SP-1a*L	Spleen	57	57	33	0	0				
LV-1a*L	Liver	61	61	30	0	0				
JO-1b*L	Joints	52	52	41	0	0				
ST-44b*L	Stomach	50	50	30	0	0				
FI-1b*L	Connective Tissues	50	50	29	0	0				
SK-1-3*L	Skin	48	48	53	0	0				
FA-1b*L	Fatty Tissues	54	54	64	0	0				
GB-43b*L	Gallbladder	50	50	25	0	0				
KI-1-3*L	Kidneys	49	49	26	0	0				
UB-65L	Urinary Bladder	49	49	55	0	0				

APPENDIX A (cont.) Confidential Client Information

Client Number: 1A Name: ----- Confidential Client Information **Visit Number: 4** UserName: SYSDBA Date and Time: 6/22/2001, 11:11

		Base	Readings			
Point ID	Meridian	Max	Min	Rise	Fall	Drop
LY-1-2*R	Lymphatics	51	51	30	0	Ô
LU-10c*R	Lungs	53	53	39	0	0
LI-1b*R	Large Intestine	49	49	23	0	0
NE-1b*R	Nervous System	53	52	45	0	1
CI-8d*R	Circulation	52	52	49	0	0
AL-1R	Allergies	48	48	34	0	0
AL-1b*R	Allergies	50	50	33	0	0
OR-1b*R	Cellular Metabolism	49	49	39	0	0
TW-1R	Endocrine System	51	51	32	0	0
TW-1b*R	Endocrine System	51	50	51	0	1
HE-8c*R	Heart	51	51	40	0	0
SI-1b*R	Small Intestine	52	49	45	8	3
LY-1-2*L	Lymphatics	50	50	22	õ	Õ
LU-10c*L	Lungs	50	50	29	Õ	Ő
LI-1b*L	Large Intestine	52	50	44	Š	2
NF-1b*L	Nervous System	50	50	34	ó	ō
CI-8d*I	Circulation	48	48	32	ŏ	Ő
AL-11	Allergies	47	47	31	Ő	0
AL_16*I	Allergies	48	48	29	Õ	Ő
OR -16*I	Cellular Metabolism	49	49	38	Ő	Ő
TW-11	EndocrineSystem	50	50	54	Ő	0
TW-16*1	Endocrine System	48	48	29	ŏ	0
HF-8c*I	Heart	53	52	42	Ő	1
SL-1b*L	Small Intestine	49	49	24	ŏ	Ô
PA-1a*R	Pancreas	60	60	29	õ	Ő
LV-1a*R	Liver	49	49	31	ŏ	õ
$IO_{-1}b^*R$	loints	46	46	31	õ	0
ST-44b*R	Stomach	44	44	19	Ő	Ő
FL-1b*R	Connective Tissues	50	50	38	õ	Ő
SK-1-3*R	Skin	48	48	27	Ő	Ő
F4-16*R	Fatty Tissues	55	53	56	ŏ	Ő
GB-43b*R	Gallbladder	53	53	38	ŏ	Ő
KI-1-3*R	Kidnevs	48	48	30	ŏ	0
UB-65*R	Urinary Bladder	46	46	38	ŏ	0 0
SP-12*I	Spleen	53	53	26	Ő	Ő
IV-1a*I	Liver	57	57	36	Ő	0 0
IO-16*I	loints	50	50	26	Ő	0
ST-445*I	Stomach	48	48	45	Ő	Ő
FL-16*I	Connective Tissues	50	50	34	0	Ő
SK-1-3*I	Skin	47	47	25	ŏ	ŏ
FA-16*I	Fatty Tissues	48	48	35	Õ	0
GB-43b*I	Gallbladder	47	47	34	ŏ	0
KI-1-3*I	Kidnevs	45	45	26	Õ	0
UB-651	Urinary Bladder	46	46	18	ŏ	0
	Cimary Diaudei	10	10	10	U	0

∞ ∞ ∞