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ABSTRACT 

Mind-matter interactions observed in laboratory experiments typically manifest as minute statis­
tical flucruations from chance expectation. Meta-analyses suggest that these small flucruations 
reflect genuine, direct interactions between mind and matter, but lack of predictability of the 
effect has made systematic study of the phenomenon difficult. 

Two general factors that may contribute to erratic laboratory outcomes are (a) unavoidable 
environmental fluctuations and (b) a physical principle that tends to counterbalance mind-matter 
effecrs in time and space. Environment is used in the holistic sense, including cosmic, global, 
local, and personal variables. The physical principle is envisioned as a tendency for perturba­
tions introduced into a system to be statistically balanced by opposing perturbations so as to 
maintain an overall condition of equilibrium. 

A longitudinal experiment with the experimenter as subject was designed to explore the possible 
influences of these twO factors in mind-matter interaction. The results found strong indicators 
of environmental modulation, including a successful demonstration that a neural network could 
learn to predict mind-matter interaction performance based upon eight environmental variables. 
Evidence for a time- and space-like equilibrium principle was also observed in the data. 
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INTRODUCTION 

THE PROBLEM OF PREDICTION 

Meta-analyses of experiments on mind-matter interaction (MMI) 
involving random number generators (RNG) and other random physical 
systems provide strong evidence that (a) MMI effects are genuine and 

(b) they manifest as small perturbations from chance expectation statistics.l-3 

MMI is genuine in the sense that the cumulative database shows effects that 
are statistically unequivocal, replicable by different experimenters, and not due 
to methodological artifacts or selective reporting practices. MMI is small and 
stochastic in that the effects typically deviate from chance expectation by only 
a few percent, and experimental outcomes seem to inexplicably change from 
one experimental session to the next. 

Despite the fact that the cumulative database shows that MMI experiments are 
replicable, in any given experiment it is still nearly impossible to predict the 
outcome. Lack of predictability in experiments is sometimes caused by insuffi­
cient statistical power.4,5 However, the situation for MMI appears to be more 
complex because an experiment involving one hundred trials seems to produce 
about the same statistical result as one million trials.6 MMI effects apparently 
do not manifest at the level of the individual tria~ but at the level of the experi­
ment. This curious hint of a teleological principle has led some researchers to 
label the MMI effect as "goal-directed."7 

ENVIRONMENT AND MIND-MATTER INTERACTION 

Lack of experimental predictability may also be caused by limitations imposed 
by methodological or theoretical assumptions. For example, the vast majority 
of RNG experiments have focused on three general factors: psychological, 
physiological, and physical. Psychological factors include such things as 

12examining different cognitive strategies and personality traits.8- Physiological 
factors include such things as monitoring hean rate and electrodermal response. 13-16 

Physical factors include fluctuations in the planetary geomagnetic field, local 
magnetic field, and sunspot number,16-19 as well as the effects of distance and 
different physical systems on MMI performance.2o 
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While these are all interesting theoretical and methodological topics, there has 
been a comparative lack of attention placed on how these factors interact with 
each other, and with many basic environmental variables such as barometric 
pressure, humidity, and temperature. To my knowledge, the effects of many 
more exotic geophysical variables, such as the intensity of solar flux or 
conditions in the ionosphere, have never been examined in MMI experiments. 

In the present study, I consider the possibility that a complex assemblage of 
cosmic, global, local, and personal variables-some rarely monitored in parapsy­
chological studies-conspire to modulate MMI effects. This "invisible modula­
tion" is postulated to accommodate a fair percentage of the unexplained variance 
in experimental data, possibly so much variance that withour taking these 
variables into account, experimental outcomes seem to be unpredictable. 

The term modulate is used to suggest a causal rather than a mere correlational 
relationship; it seems unlikely that performance on an MMI task would affect, 
say, the global geomagnetic field or the number of sunspots. Instead, it seems 
more likely that environmental factors affect human psychophysical perfor­
mance on many different levels, including mind-matter interaction. 

STATISTICAL ORDER AND MIND-MATTER INTERACTION 

I n addressing the "goal-oriented" nature of MMI RNG experiments, May, 
et at observed that the effect size in individual MMI experiments decreases 
almost exactly in proportion to the square root of the number of trials.6 

One implication is that MMI effects are better accounted for by an informa­
tion organization or non-local correlation principle rather than the usual sort 
of causal, physical-type force. In other words, the cumulative database suggests 
that when physical target systems are subjected to MMI, they do not behave 
in physically unexpected ways, but rather their natural stochastic behavior is 
reorganized by some unknown means.21 

Thus, MMI effects may be thought of as the creation of localized regions where 
random noise has been momentarily OIfanized, i.e. as a paradoxical non-local 
production of local negentropy.9,lO,22-2 The term "local" refers to the idea 
that the statistical organization occurs only in the immediate vicinity of the 

Subtle Energies • Volume 4 • Number 1 • Page 3 

http:means.21


physical target, and only for a short time. The term "non-local" refers to the 
idea that the cause of the reorganization is not local to the target; that is, the 
cause is presumably related to a remote person's mental intention. The term 
"negentropy" refers to the idea that local randomness has been momentarily 
decreased, or equivalently that local order at the target area has increased. 

PRERECORDED DATA 

Some studies have been reported in which random targets were success­
fully influenced using data that was recorded before the mental intention 
was applied?,20 The implication is that MMI effects may be time­

independent, or perhaps time-reversible. 

To help focus and simplify the following discussions and results, the results 
of the prerecorded data condition will be reported in detail in another 
paper. 

METHOD 

The present experiment was conceived (a) as an extension of a previous 
study that used background ionizing radiation as the MMI "target," (b) as 
a conceptual replication of a systems theoretic-inspired experiment by von 
Lucadou, and (c) as exploratory, both in terms of design and 
analysis.9,10,16,25 

This last point requires some explanation. After 40 years of experiments, the 
existing database provides substantial evidence for the reality of genuine MMI 
effects. There are two general approaches one can take to increase our 
understanding of the phenomenon. One way is by methodically carrying out 
carefully pre-planned, hypothesis-testing studies, along the lines of the usual 
proof- and process-oriented experiments with which we are all familiar. The 
other way is to take what we know and speculate "what if." Thus, in the spirit 
of scientific adventure, with all its risks and hopes for serendipity, the present 
study included both preplanned predictions and some frankly exploratory 
analyses. 
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THE MMI TARGET 

Background ionizing radiation was selected as the target because it is a natural, 
pervasive source of truly random events, it is easy and relatively inexpensive to 
measure, and it provides an interesting and unusual context for an experiment 
in which the target system is potentially both influenced (by MMI) and the 
influencer (as an environmental modulator). The consequences of creating a 
kind of feedback loop between influencer and "influencee" is unknown, but I 
reasoned that if MMI effects manifest as a form of local phase coherence in a 
random system, perhaps the process can be enhanced by providing a setting 
favorable to the establishment of a psychophysical phase-locked loop. 

EQUIPMENT 

Geiger counter: Aware Electronics RM-60 "microRoentgen radiation monitor," 
a computer-controlled, industry-standard, halogen quenched, stainless steel 
Geiger-Mueller tube. 

Local weather variables: Oregon Scientific digital thermometer, barometer, 
hydrometer; 1% accuracy on each scale. Digital barometer calibrated using 
(USA) National Weather Service daily barometric readings for the Boston, 
Massachusetts, area. 

Body temperature: Micronta digital temperature; 0.10 F accuracy. 

Magnetic field monitor: Applied Physics Systems milliammeter (Model 
428C), equipped with fluxgate magnetometer one-axis probe (Model APS 
460). Resolution 1 ~ Gauss, range 1 ~ Gauss to 2 Gauss. 

Computer: Gateway 2000 386-SX PC-clone. 

Software: written by the author using Microsoft QuickBasic. 

Cosmic and global variables: uploaded from the Solar Daily Geophysical 
Bulletin on the Internet. Raw data is collected by NASA and NOAA satellite 
as well as a dozen magnetic observatories around the world, then compiled for 
redistribution on the Internet by the University of Lethbridge, Canada.26 
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ExPERIMENTAL DESIGN 

A n RM60 computer-controlled geiger counter (GC) was used to contin­
uously monitor background ionizing radiation at a fixed site. One 
sample was defined as the number of radiation counts registered at the 

GC in 10 seconds. The data conformed to a Poisson distribution, and the 
expected mean (empirically determined) was about 2. 

A session was defined as 200 contiguous samples, therefore lasting 2000 seconds, 
or about 33 minutes. The entire experiment was planned to run for 100 
sessions, one session per day. The actual experiment had to end after 65 days 
of data collection because the computer, which was loaned to the author, had 
to be returned.27 The plan to run sessions on successive days was followed for 
63 of the 65 days; in two cases a single day was skipped. 

The 200 samples per session were divided into two equal groups: 100 samples 
were used in a real-time condition and 100 were used in a prerecorded condition. 
Within each condition, 75 samples were used as controls and 25 as experimental 
treatments. 

Four identical GCs were used; each simultaneously collected data from different 
locations in the laboratory. The GCs were located as shown in Figure 1. GCI 
was the explicit MMI target, and the only target for which feedback was 
provided. The others were to used to test for entropy effects (GC2) and as 
nominal controls (GC3 and GC4). & shown in Figure 1, an opaque screen 
hid GC2 from the participant's sight during experimental trials. The partici­
pant's perspective of the experiment is described in more detail later. 

COMPUTER PERSPECTIVE 

To begin a session, the experimenter-subject (the author) ran the computer 
program that controlled the experiment. The computer created a date-stamped 
datafile, then it checked that each of the four GCs was operating properly by 
waiting until each in turn had registered 2 radiation counts. The computer 
then collected 100 contiguous samples. As each sample was collected, the 
computer monitor displayed the number of the sample, 1 to 100. These one 
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Figure 1. Position ofequipment in the laboratory. Geiger counter 1 (GCl), the explicit 
mind-matter target, was two fiet from the subject. GC2 was six inches to the right of 
GCl, hidden behind an opaque screen. GC3 was six fiet from GC1, and GC4 was nine 
fiet. Both GC3 and GC4 were located behind the subject's view, but neither was explic­
itly hidden. The subject sat at a desk and either watched a 1Vset as a distracter during 
control periods or attempted to lower the radiation level at GCl during treatment periods. 

hundred samples were used later in the prerecorded condition. During this data 
collection period, the experimenter engaged in tasks outside the laboratory room 
housing the equipment and GCs. 

After 100 samples had been collected (about 15 minutes later), the computer 
beeped to alert the experimenter, then it asked for the following data to be 
entered: current barometric pressure, room temperature, room humidity, body 
temperature (of the subject), local magnetic field (vertical DC component), 
sunspot number, geomagnetic field (planetary A-index, a real-time estimate of 
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the more popular ap index), solar flux, background X-ray flux, wind (none, 
moderate, lots), precipitation (clear, cloudy, wet), physical condition (from I 
good, to 5 = poor), mental condition (1 high, 5 = low), confidence in the 
task (1 high, 5 = low), and a line or two of general comments. 

A fter this information was entered, the computer saved the data to the 
datafile and then generated a pseudorandom number between 2 and 
12, using the QuickBasic "RNG" pseudorandom number generator 

(PRNG). Radiation counts from all four GCs were then collected until this 
random number of counts had been received. At this point, the PRNG was 
re-seeded to the current computer clock time, and a "condition" array of 200 
elements was created. This array specified whether a sample was to be 
designated as a real-time control (N = 75, coded as 0), a real-time treatment 
(N =25, code = 1), a prerecorded control (N = 75, code 2), or a prerecorded 
treatment (N = 25, code 3). 

Now the computer began to run through the condition array. If the next 
condition was a real-time or prerecorded treatment, it would sound a tone to 
alert the subject to begin applying mental intention to cause GCI to return a 
low count rate. Mter each treatment sample, if the count rate returned by 
GCI was 2 or less, the computer sounded a higher pitched tone as feedback, 
otherwise there was no tone. If the next condition was a real-time (0) or 
prerecorded (2) control, the computer also was silent. Treatment samples were 
interspersed randomly throughout the controls, thus on average a treatment 
occurred about once in four samples. 

PARTICIPANT'S PERSPECTIVE 

From the participant's point of view, once a session began the task was to watch 
a TV program and wait for a low-pitched tone. This signaled the beginning 
of a 10-second treatment condition. During this 10 second period, the subject 
was to try to lower the radiation level at GC 1. If the returned radiation count 
at the end of the treatment period was 2 or less, the computer sounded a high­
pitched chirp as feedback. During control samples, the computer remained 
silent and the subject watched the TV set as a distracter. The TV remote 
control "mute" button was used to switch off the TV audio during treatment 
samples and switch it back on during control samples. 
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The task was always to lower the radiation level during treatment periods 
because I (as subject-experimenter) found it easier to quickly produce a calm 
mental state and imagine the idea of "calming" a GC, than to quickly generate 
an aroused mental state and imagine the idea of "exciting" a Gc. This bias 
probably reflects the author's experience with meditation designed to produce 
a calm mental state. Individuals experienced in active martial arts such as 
karate would perhaps find it easier to quickly generate a highly focused, aroused 
mental state.28 

In addition, the task was defined as a constant "aim low" because of the 
possibility that low level ionizing radiation is hazardous, thus there is intrinsic 
motivation to lower the level of radiation. In contrast, instructions to explic­
itly raise the level of radiation may invoke psychological defense mechanisms 
that might have suppressed the desired goal from being achieved. 29 

N o special mental technique was specified for the experiment. Typically 
during treatment periods I imagined the presence of a "calm field" 
surrounding the Gc, which served as a fanciful radiation "shield." 

Note that this MMI task can be accomplished by (a) lowering the sensitivity 
of GCl or (b) lowering the actual level of radiation or (c) increasing the decay 
time of ambient radioactive sources. No attempt was made in this experi­
ment to discriminate among these various possibilities. 

MEASURES OF MENTAL INFLUENCE 

There were two MMI measures per Gc, per condition, resulting in a total of 
2 x 4 x 2 = 16 measures. The first measure was effect size r, calculated as 

where df= 98, t = (t - c) a,,; t = mean of treatment samples for a GC, c = 

mean of control samples for the same GC, and ad = combined standard error 
of the two samples.3D The second measure was a F-score, created as F = cr'l('F' 

where at was the standard deviation of the treatment samples for a given GC 
and ar was the standard deviation of control samples for the same Gc. 
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Note that because this experiment consisted of the same number of samples 
per session, per condition, rand t can be used interchangeably as effect sizes 
for the present design. If one wished to compare effect sizes across different 
experiments consisting of different sample sizes, r would be used. 

Because the defined MMI task was consistently to lower radiation counts 
at GC 1 during the treatment condition, success was defined in terms 
of statistics as r < 0 (or equivalently, t < 0) and F < 1. Note that these 

measures were designed to diffirentially compare treatment vs. control radiation 
levels at a given GC during a single session that lasted about one hour. Thus, 
any trends or correlations observed with MMI data would not be due to drifts 
in GC sensitivity or to natural variations in background radiation.31 

PREDICTIONS AND ANALYSES 

Analyses are separated into preplanned and exploratory. Preplan ned predic­
tions were based upon observations in earlier studies; exploratory analyses were 
either post-hoc or were based upon speculations about the possible nature of 
MMI effects. 

Preplanned Prediction: MMI Effect. The usual MMI hypothesis is to 

predict t < (, where t and c are as described above. This can be tested 
with a t-score, and one would hope to obtain a t < -1.65 for a one-tailed 
test. In the majority of earlier proof-oriented studies involving RNGs this 
made perfect sense since the expected effect size was unknown. And while 
there is still some confusion over the effect size per trial in RNG studies, 
there is a good estimate of the effect size per experiment in these studies. 

Based upon data collected for a meta-analysis of RNG studies,2 we find that 
the mean Zrscore (and standard error) from 623 previously reported RNG 
experiments is z = 0.519 ± 0.078. While this mean Zrscore may not seem 
very impressive, note that it is more than 6 standard errors from a chance 
result (i.e., .519/.078 6.65). 

Thus, this prediction is that the overall experimental outcome for the present 
experiment will be negative, meaning treatment radiation < control radiation, 
and the absolute value of the outcome, a t-score, will be within the 95% 
confidence interval of the population mean z-score of z = 0.519 ± 0.078. 
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Preplanned Prediction: Radiation Correlation. In a previous study,16 I found 
that successful MMI experiments (i.e., those where z < c ) occurred when 
the ambient radiation level was significantly lower than the radiation levels 
measured during unsuccessful MMI experiments. Thus, the prediction is that 
there should be a positive correlation between effect size and baseline radiation 
level recorded in each session. 

Preplanned Prediction: Rebound in time. A previous studyl6 found a signif­
icant rise in radiation levels two samples past the treatment period (i.e., 20 
seconds after the mental effort). This is interpreted now as an equilibrium 
rebound that occurs over time. The prediction is therefore that a similar 
rebound will again be found at two samples past the treatment period in 
GCl. 

Exploratory Analysis: Environmental-MMI Correlation Matrix. If the 
environment genuinely influences MMI effects in linear ways, then we can 
predict that a (Pearson) correlation matrix between all environmental and 
MMI measures will show an excess number of significant correlations. A 
similar control matrix, formed from the same data except that the time 
sequence is randomized, is predicted to show the chance expected number of 
significant correlations. 

Exploratory Analysis: Predicting MMI effects With a Neural Network. If 
environment influences MMI performance in either linear or non-linear ways, 
then a neural network may be able to learn to associate some environmental 
variables with some measure of MMI performance. After successfully training 
a neural network with half of the available data, the prediction-using the 
second half of the data-is that we will find a positive correlation between 
the neural network's prediction of MMI performance based on the environ­
mental variables, and the actualMMI performance observed during the experi­
ment. Note: This analysis was preplanned, but the specific variables to be 
used were selected based upon examination of the above mentioned cross­
correlations. 

Exploratory Post-Hoc Analysis: Rebound in Space. If statistical order is 
conserved in a system in space as well as in time, we would expect that as 
radiation in GCl is "influenced" to go down, radiation at Ge2 will go up 
at the same time, and vice versa. The prediction is a negative correlation 
between MMI effects observed in GCl vs. GC2. 
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Figure 2. Example environmental fluctuations recorded over course ofexperiment. base 
is baseline radiation (as mean number ofcounts in a lO-second sample); baro is barometric 
pressure; temp is indoor temperature; humid is indoor humidity; lpai is log ofthe planetary 
A-index; and ssn is sunspot number. 

RESULTS 

ExAMPLE OF RAw DATA 

The experiment was conducted for 65 days, from August 26, 1992 to 
November 3, 1992. The primary reason for conducting a longitudinal experi­
ment was to ensure that the experiment would be conducted over a wide range 
of environmental conditions. To illustrate how the environment varied over 
this period, Figure 2 presents graphs of the raw data for six environmental 
variables. These graphs show, as expected, that the environment is highly 
dynamic. Some of these variables have known relationships, for example, 
ambient temperature and humidity are positively correlated. 
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Figure 3. Realtime effict size for geiger counter lover the course of the experiment. 

EVIDENCE FOR MIND-MATTER INTERACTION? 

fu an example of the type of MMI result this experiment produced, Figure 3 
shows the effect size r per session for the real-time condition. Visually there 
is no obvious trend, and the mean effect size appears to hover around zero. 

MMI Prediction. The MMI prediction was that the mean overall effect size 
(as a terminal t-score) would be negative, and would fall within the 95% 
confidence interval for the meta-analytic population estimate (z = 0.519 ± 

0.078). The terminal t-score was t = -.554, and the 95% confidence interval 
for the population estimate is .513 to .597, thus the MMI prediction is 
confirmed. 

ENVIRONMENTAL MODULATION OF MMI? 

Radiation Correlation. A previous srudy16 indicated that MMI effect size 
improved (i.e., became more negative) as baseline radiation levels dropped. 
The prediction was a positive correlation between overall MMI effects in 
Gel (i.e., real-time and prerecorded results combined) and baseline radiation 
levels. The result, shown in Figure 4, is positive, but not significant (r 
.092, 63, P .233 one-tail). 

Now, without straying too far afield, I will momentarily jump ahead to the 
later discussion on equilibrium effects. Because of the counter-balancing 
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Figure 4. Correlation between MMI environmental and equilibrium 
efficts in GCl vs. baseline radiation factors may indeed be related, but in 
lellelS. 

a complicated way because the 
correlation for GC2 is much stronger than the same correlation for GC 1. The 
difference berween Gland G2 correlations is significant at p = .0008. 

Correlation Matrix. A more general way of exploring relationships among 
environmental and MMI variables is to create a correlation matrix for these 
variables, then see whether the number of statistically significant correlations 
exceeds the number expected by chance. This is similar to von Lucadou's9,10 
system-theoretic approach to studying MMI effects. 

The experimental dataset consisted of a spreadsheet of 65 rows, one row per 
session, and 49 columns, one column per variable of interest. The 49 columns 
included the following environmentaL variabLes: 

session number, rime of day, baseline radiation, barometric pressure, 
baseline radiation one day before the experiment,32 barometric 
pressure -1, change in barometric pressure,33 wind, indoor temper­
ature, indoor humidity, change in humidity, humidity -1, local 
magnetic field, background xray, log of background xray, local 
magnetic field -1, log of background xray -1, change in log of 
background xray, sunspot number, planetary A-index, log of 
planetary A-index, sunspot number -1, planetary A-Index -1, log of 
planetary A-Index -1, solar flux, body temperature, precipitation, 
physical status, precipitation -1, physical status -1, mental status, 
mood, confidence, 

and the following mind-matter interaction variables, 

rl, F1, r2, F2, r3, F3, r4, and F4 for realtime and pI, fl, 
p2, f2, p3, f3, p4, and f4 for prerecorded effects. 
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Figure 6 shows rwo correlation Figure 5. Correlation between MMI 
matrixes: The little boxes indicate efficts in GC2 vs. baseline radiation 
statistically significant (p < .05, levels; r = -.4379, df = 63, P = 

rwo-tail) correlations. The matrix .00013 (one-tail). 

on top shows correlations in actual data; the matrix on the bottom is a control 
dataset created by using the original data but randomly scrambling the chrono­
logical order of the MMI variables. This maintained the original time­
sequence for all of the environmental variables but randomized the MMI 
variables (which, under the null hypothesis, should not be related in any way 
to the environmental outcome). 

Each matrix above shows 16 MMI by 33 environmental variables, for a total 
of 16 x 33 = 528 correlations. By chance, one would expect to find 528 x 
.05 = 26 significant correlations. The experimental dataset resulted in 44 
significant (p < .05 rwo-tail) correlations (exact binomial p = .0004); the 
comparable number for the control data was 26 (p = .4801). At the p .S­

.10 (rwo-tail) level, there were 68 correlations in the actual dataset (exact 
binomial p = .013) and 59 in the control dataset (p = .165). Thus, the 
prediction is confirmed: The actual data resulted in more significant correla­
tions than expected by chance. 

Separating the above correlations significant at the p .S- .10 level results in 
the distributions shown in Figure 7. A chi-squared test of the experimental 
distribution in Figure 7 results in Xl = 26.47, P = .000008. By inspec­
tion, it is clear that GC 3 and GC 4 were responsible for this significance. 
A similar distributional test for the control data results in a nonsignificant 
Xl = .864, P = .834. 

It might be argued that some of the excess significant correlations in the 
experimental data might have been due to the fact that some of the environ­
mental variables tested were intercorrelated with each other. That is, ten of 
the environmental variables were created by simply shifting the data sequence 
by one day.34 
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Figure 6. Correlation matrices for environmental (abscissa) vs. MMI (ordinate) variables. 
Top matrix shows actual data; bottom matrix shows control data. The environmental 
variables correspond to the 49 variables listed in the text. 

To test the possibility that these time-shifted variables might have been 
responsible for the large number of significant correlations in the experi­
mental matrix, all ten time-shifted variables were removed from the correla­
tion matrix and the number of remaining significant correlations was 
determined. This new matrix consisted of 16 x 23 = 368 correlations. By 
chance, we would expect to find 368 x .05 = 18.4 correlations significant 
at p s .05; in fact, 32 were observed (exact binomial p = .0009). Thus, 
we can have some confidence that there were genuine environmental relation­
ships with MMI performance. 

Neural Network Analysis. Artificial neural networks are a recent techno­
logical development useful in discovering patterns in noisy and complex 
data.35 This technology is based upon how information is processed in 
biological neural networks. The technique has proven to be exceptionally 
valuable in difficult computational applications such as automatic speech 
recognition, radar signal identification, and stock market predictions. More 
pertinent to the present study, previous work has shown that neural networks 
can be used to discover complex person-unique patterns in MMI RNG 
data.36 
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Figure 7. Distribution of expected and observed number of significant correlations for 
experimental (left) and control (right) datasets. 

A neural network was used to analyze the present dataset to see if one of the 
MMI variables could be predicted from a set of environmental variables. If 
this were possible, it would provide further evidence of genuine relationships 
between environmental and MMI performance as well as demonstrate the 
viability of building a predictive model of MMI performance. 

Eight predictors were selected: one cosmic variable (log of background X-ray 
flux in the ionosphere), one global variable (log of the geomagnetic field 
planetary A-index), four local variables (ambient ionizing radiation level, wind, 
precipitation, barometric pressure the day before the experiment), and two 
psychological variables (mood and confidence),37 The MMI variable to be 
predicted was F1, the ratio of the real-time treatment standard deviation to 
the control standard deviation in the explicit MMI target, GC 1. These 
variables were selected by choosing representative variables from each of the 
environmental "bands," and by inspection of the above-mentioned MMI vs. 
environment correlation matrix. 

Half of the data was used to teach the neural network the association between 
the inputs and the output; the remaining half of the data was used to test 
whether what the network had learned would generalize to new data it had 
not yet "seen." If the network had learned a genuine relationship between 
the inputs and output, then after passing the second half of the data through 
the trained network, one would expect that the correlation between the 
predicted output and the actual output would be significantly positive. 

Figure 8 shows the correlation between the actual and predicted neural 
network results for the output, Fl. The correlation is positive, r = .405 
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Figure 8. Correlation between neural-network predicted MMI outcome and actual 
outcome, r = .105, P = .000002. 

(l26 dj), P = .000002. This correlation indicates that the network success­
fully learned to identitY an MMI effect based on eight environmental 
predictor variables. 

Neural network training-testing process. Where did the 126 degrees of 
freedom come from in the above correlation? The answer helps to explain 
the neural network training-testing process, but because it is a technical 
diversion, the discussion is presented in Appendix A. 

What did the network learn? Given the evidence that the network learned 
how to predict MMI performance based upon eight environmental factors, 
how can we come to understand this knowledge? Unfortunately, the answer 
is not simple because the neural network captures its knowledge in an abstract 
higher-dimensional space. 

However, we can begin to study the knowledge by creating a three­
dimensional representation for how two of the eight variables covary in this 
higher-order space. Figure 9 shows how the neural network has captured 
the relationship between the input variables baseline radiation, barometric 
pressure, and the output variable F1, while all over variables are held 
constant.38 This graph tells us that the neural learned that MMI perfor­
mance would improve on GC 1 (Le., when F1 < 1) when the ambient 
radiation level is low and the barometric pressure is high. The graph also 
indicates that performance will be poor when there is low barometric pressure 
and low baseline radiation. 
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Figure 9. Relationship between background radiation barometric pressure (y-
axis), and the MMJ variable Fl (z-axis). 

As another example, Figure 10 shows the relationships between the log of 
the planetary A-index (geomagnetic fluctuations), baseline radiation, and Fl. 
This saddle-shaped curve reveals that the network learned that MMI perfor­
mance is better when radiation or geomagnetic fluctuations are at average 
levels, but performance suffers if either variable goes to extremes, especially 
if they move in opposite directions (i.e., radiation low, geomagnetic fluctu­
ations high, or vice versa). 

Many similar analyses will be required to understand what the neural 
network has learned, but in the meantime it is encouraging to know that 
there is very likely a model waiting to be discovered-a non-linear, multidi­
mensional, multi-factorial model-which may some day be able to reliably 
predict MMI functioning. 

Rebound in space? A speculative analysis postulated that when the MMI 
task was successful, radiation in Gel would drop during the treatment 
samples and radiation in Ge2 would rise. This can be tested by examining 
the correlation between individual session scores in Gel vs. Ge2, where we 
would predict a negative correlation. 
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Figure 10. Relationship between baseline radiation, log ofplanetary A-index, and MMI 
variable F 1. 

To form individual session scores, rather than use t-scores as described above, 
I calculated a Mann-Whitney sum of ranks score for the data in each session, 
then transformed this into a z-score.39 This was performed to avoid the 
parametric assumptions of t-scores.40 Figure 11 shows this correlation, which 
is significantly negative as predicted (r = -.153, t = -1.73, P = .04, one-tailed). 

To test the possibility that this apparent space-like rebound is spurious, the 
cross-correlation matrix between all GCs is shown in Table 1, along with 
the associated t-scores. This reveals that the only significant (one-tailed) 
correlation was between GC 1 and GC 2. 

Rebound in time The previous studi 6 observed a statistically significant 
time-like rebound in GC 1 two samples after the explicit effort (labeled "0" 
in Figure 12). It was predicted again in the present data. 

Table 2 compares time-shifted means in Figure 12 against the mean at time 
o as t-scores. This reveals that only the sample mean at +2 is significantly 
higher, with t (64 dj) 2.990, P < .01, in conformance with the previously 
observed statistical rebound in time. 
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Figure 11. Correlation between individual session z-scores, GCl on the x-axis, GC2 on 
the y-axis. 

DISCUSSION 

This experiment was designed to explore two general factors that may 
influence mind-matter interaction: environmental fluctuations and a 
postulated equilibrium principle that manifests as MMI rebounds in 

space and time. The picture that emerges is the following: (a) the environ­
ment does appears to modulate MMI performance, (b) there are intriguing 
hints of space-like and time-like rebounds, and (c) there is reason to believe 
that fairly good predictive models of MMI performance are realistically attain­
able. This last point is most important from a pragmatic point of view because 
it suggests that neural network and other pattern-matching technologies may 
be of significant value in creating practical applications out of MMI phenomena 
for in advance of our gaining a clear understanding of how and why MMI 
works. 

Among other things, the emerging complexity of MMI suggests that the issue 
of clearly isolating independent from dependent variables is probably more 
complicated than we had previously imagined.41 In the meantime, is there a 
schema we can use to begin to understand the interactions observed among 
environment, statistical rebounds, and MMI? To begin, we may consider the 
question as to what is "influenced." 
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Table I 
Cross-correlations for all GCs, showing that only GC 1 vs. GC 2 

resulted in a significantly negative correlation. 

Correlation gl g2 g3 

gl 1 
g2 -0.153 1 
g3 -0.102 0.061 
g4 0.111 0.108 0.111 

t-score 

g2 -1.73 
g3 -1.15 0.68 
g4 l.25 l.21 l.26 

WHAT IS INFLUENCED IN MIND-MATTER INTERACTION? 

One attractive possibility, proposed by Puthoff and Targ22 and others, is that 
the MMI effect is a phase coherence phenomenon involving short-term 
mobilization of system noise. This is attractive because most, if not all, MMI 
effects observed in the laboratory can be produced in principle by slightly 
shifting the random target system's boundary conditions. This can be explained 
by analogy with a common phase coherence phenomenon at the heart of the 
compact disc player, the supermarket scanner, and the telephone network, 
namely, the laser. 

The laser is a light amplification device. Lasers come in many forms, ranging 
from solid state to gas, but the basic operating principle is essentially the same. 
If you can manage to nudge random electromagnetic waves into phase 
coherence, you can produce an intensely powerful output beam. 

To expand upon this idea, let's say you take a gas laser tube and heat up the 
gas until it becomes a plasma, much like the plasma inside a softly glowing 
neon sign. To turn that soft glow into a laser beam, you align two mirrors at 
either end of the tube. The light reflecting off the mirrors bounces back inside 
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Figure 12. Time-offset graph for Gel, real-time condition only, showing the mean 
absolute level of radiation in GCl at the time when MMI effort was applied (time 0), 
and plus and minus three samples from thllt time. Error bars are plus and minus one 
standard error. 

the plasma and a resonance effect is set up. If the mirrors are perfectly aligned 
and the distance between the mirrors is precisely right, the plasma resonance 
will quickly increase and the system will start to "lase." 

NOW let's say you slightly demne the mirrors so that the plasma is not 
lasing. The tube now resembles an ordinary, softly glowing neon lamp. 
If you had asked a physicist of the last century to look at that plasma 

and to calculate the statistics for the photons coming out, he (physicists were 
mostly "he" in the last century) would have drawn a nice smooth distribution. 

Then you would say to him, 'What's the probability that all the light will 
come out in one mode?' He would say, 'that's permissible as far as the physics 
goes, but it's highly unlikely: So then [you] come along and rotate the mirror 
into place, and this suddenly produces [the incense beam of the laser,] which 
is basically only a change in the statistics of the situation.22 

Table II 
Time-shift offsets and t-scores comparing offset means 

with mean at time 0, for geiger counter 1, real-time data. 

offiet 
f-score 

-3 
-0.581 

-2 
1.368 

-1 
1.764 

o 
o 

+1 
-0.305 

+2 
2.990 

+3 
1.630 
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In other words, an infinitesimal change in the boundary conditions of a 
random system (aligning the mirrors in a laser tube) results in phase coherence 
that produces an unexpected effect with macroscopic consequences (e.g., a 
light beam so intense it can punch a hole through a metal sheet). Likewise, 
in a random generator system, an infinitesimal nudge may result in a 
momentary phase change that we measure as a shift in the system's statistics. 
A properly designed MMI experiment that repeatedly nudged a random 
system in just the right way might be able to create the equivalent of an 
intense beam. What would such unexpected order do to the random system 
(say, to a geiger counter or electronic random number generator)? It may 
appear to anomalously "freeze up," or if computer-based, cause the system to 
crash.42 

ENTROPY REBOUNDS? 

If MMI effects are reflections of order or negentropy impressed into a system, 
we would not necessarily expect to find evidence for statistical rebounds 
because entropy is not conserved; in an isolated system entropy increases. 
However, as living creatures, we maintain a state of constant low entropy (to 
remain alive) by eating lower-entropy food and discarding higher-entropy 
waste as heat, carbon dioxide, etc.43 

Perhaps MMI manifests because we are able to somehow non-locally "loan" 
some of our low-entropy to a remote location. If this were the case, we could 
predict that the process of performing MMI causes entropy to rise in the 
"sending" organism. This could be tested by seeing whether the strength of 
MMI results are correlated with say, levels of bodily fatigue or vitality 
(assuming that fatigue and vitality are associated in some way with individual 
entropy). 

OrnER. EVIDENCE FOR SPACE- & TIME-LIKE STATISTICAL REBOUNDS 

However we conceptualize the MMI rebound effect, besides the observations 
in the present experiment, there is prior evidence for space- and time-like statis­
tical rebounds in MMI experiments. The effects are reported variously as 
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constricted variance in control data, as a "balancing effect," and as unexpected 
effects in "silent" and "hidden" sources of randomness.9,16,42,42,45,46 

There is also evidence for time-like rebounds, described variously as linger and 
as release-of-effort effects.47 Of particular interest is that release-of-effort effects 
observed in experiments by Watkins, Watkins & Wells48 and Stanford & Fox49 

were significantly larger than results observed during periods of explicit mental 
effort. It is of theoretical interest that both space-like and time-like MMI effects 
seem to occur without explicit observation, suggesting that so-called silent and 
linger effects may reflect physical conservation principles rather than "purely" 
psychological principles, 

MUSINGS ABOUT THE NATURE OF MIND-MATTER INTERACTION 

Consider the surface of a shimmering pool (a random system). When 
the weather is calm, the surface is relatively smooth (favorable environ­
ment); when a storm arises, the surface is whipped into a frenzy 

(unfavorable environment). Regardless of the weather, the volume of water 
remains the same. 

Now imagine that every so often, an infinitesimal bubble from deep below rises 
to the surface. As it rises, the water pressure relaxes and the bubble grows. 
On a calm day, when the bubble breaks the surface, it causes the same sort of 
ripples that a tossed pebble would create, except that this "cause" came from 
the same medium whose surface is now disturbed. 

The bubble represents an event that occurs in the world of the very small (or 
very low energy). How this bubble is formed may be related to quantum 
observational effects, but the precise method does not matter for this discus­
sion. What is proposed is that once the bubble is set on its course, it eventu­
ally causes a noticeable disturbance on the surface of the pond; the disturbing 
element and the disturbed are, in a sense, the same, (This is similar to Bohm's 
notion of an implicate order.) 

If the deep pond represents the deep structure of the world, which we struggle 
to imagine using quantum and other theories, and the surface represents observ-
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able events, then perhaps what we see in MMI experiments using random 
generators are tiny "probability bubbles" that cause corresponding ripples of 
probability in the vicinity of the explicit target. These ripples are postulated 
to manifest as statistical rebound effects, which in turn serve to maintain overall 
system equilibrium. 

CONCLUSION 

This study suggests that fluctuations in the environment modulate mind-matter 
interactions in predictable ways. The specific variables and circumstances have 
yet to be explicitly identified, but it is encouraging to find evidence for lawful 
principles at work behind the otherwise erratic nature of MMI phenomena. 
This experiment also found indications that when the environment is favorable, 
MMI effects may produce short-term rebounds in space and time. 

The present experiment was not designed to answer interesting and relevant 
questions such as: 

• 	 What did MMI affect? Background radiation, sensitivity of the GCs, 
something else? 

• 	 Why did GC 3 and GC 4 show unexpected MMI-related effects? 
• 	 What specific model of the environment did the neural network actually 

learn? 

To explore these factors in more detail, I recommend that future MMI experi­
ments use physical target systems with multiple detectors to look for inter­
detector correlations, the time between mental treatments should be systemat­
ically varied, and experimental designs should be used which can discriminate 
between MMI influence of the physical target system and the detectors used 
to measure that system. In addition, even more environmental variables should 
be formally incorporated into experimental designs, especially physiological 
measurements, local electromagnetic fluctuations, and better real-time estimates 
of psychological factors. 

CORRESPONDENCE: Dean l. Radin • Center for Advanced Cognitive Science • University 
of Nevada. Las Vegas· 4505 Maryland Parkway, Box 454009 • Las Vegas, NV 89154-4009 
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APPENDIX A: NEURAL NETWORK TRAINING/TESTING DETAILS 

In the process of forming time-shifted variables, such as barometric pressure -1, the 
first line of the experimental dataset had ro be dropped because there was no data for 
the day before the first experimental session. Thus, half of the dataset of now 64 (no 
longer 65) items was 32. The network was trained on 32 items and tested on 32 
items. 

Typically one tries to give a neural network a minimum of 5 times as many examples 
to learn from as there are input variables. Since I used an 8-input model, this means 
I needed a minimum of 40 examples. However, as noted above, there were only 32 
items available. Fortunately, there is a way to increase the effective number of input 
examples, and at the same time help the network generalize its knowledge-by 
"blurring" the inputs. 

Blurring the input examples is performed by generating a random variable based upon 
the gaussian-estimated distribution of the actual inputs. Using this approach, the neural 
network is presented with each training example twice, once with actual inputs and 
once with blurred inputs. Every other time the data is passed through the network 
(one "pass" occurs when all 32 examples go through the network once), new inputs 
are randomly generated. This automatically doubles the number of training examples 
that the network is exposed to. When the 32 test inputs are passed through the 
nenvork to see if it has learned to generalize properly, the same blurring procedure is 
also applied to these inputs, thereby creating 64 predicted outputs in one pass. 

The training-testing process was performed twice in this analysis, each time training 
the network from scratch. This was done because neural networks learn from example 
starting with random initial conditions. It is possible that one training session may 
be successful in learning to extract knowledge from a dataset, but fail in transferring 
that knowledge to new data. Thus, to test the generalizability of the learned knowledge, 
it is often useful to train and test the network several times to see how well the learned 
knowledge "holds up." Therefore, 64 training outputs for the first train-test run, plus 
64 from the second train-test run gives 128 predictions; hence, the correlation reported 
here contains 126 degrees of freedom. For general information about neural network 
testing-training mechanisms, and for specifics about the Brainmaker software, refer to 

Lawrence & Lawrence. 51 
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